Black Carbon Pollution Emerges As Major Player
In Global Warming
3/24/2008 San Diego
Black carbon, a form of particulate air pollution most often produced
from biomass burning, cooking with solid fuels and diesel exhaust, has a
warming effect in the atmosphere three to four times greater than prevailing
estimates, according to scientists in an upcoming review article in the
journal Nature Geoscience.
Scripps Institution of Oceanography at UC San Diego atmospheric scientist V.
Ramanathan and University of Iowa chemical engineer Greg Carmichael, said
that soot and other forms of black carbon could have as much as 60 percent
of the current global warming effect of carbon dioxide, more than that of
any greenhouse gas besides CO2. The researchers also noted, however, that
mitigation would have immediate societal benefits in addition to the long
term effect of reducing greenhouse gas emissions.
The article, “Global and regional climate changes due to black carbon,” will
be posted in the online version of Nature Geoscience on Sunday, March 23.
“Observationally based studies such as ours are converging on the same large
magnitude of black carbon heating as modeling studies from Stanford, Caltech
and NASA,” said Ramanathan. “We now have to examine if black carbon is also
having a large role in the retreat of arctic sea ice and Himalayan glaciers
as suggested by recent studies.”
In the paper, Ramanathan and Carmichael integrated observed data from
satellites, aircraft and surface instruments about the warming effect of
black carbon and found that its forcing, or warming effect in the
atmosphere, is about 0.9 watts per meter squared. That compares to estimates
of between 0.2 watts per meter squared and 0.4 watts per meter squared that
were agreed upon as a consensus estimate in a report released last year by
the Intergovernmental Panel on Climate Change (IPCC), a U.N.-sponsored
agency that periodically synthesizes the body of climate change research.
Ramanathan and Carmichael said the conservative estimates are based on
widely used computer model simulations that do not take into account the
amplification of black carbon’s warming effect when mixed with other
aerosols such as sulfates. The models also do not adequately represent the
full range of altitudes at which the warming effect occurs. The most recent
observations, in contrast, have found significant black carbon warming
effects at altitudes in the range of 2 kilometers (6,500 feet), levels at
which black carbon particles absorb not only sunlight but also solar energy
reflected by clouds at lower altitudes.
Between 25 and 35 percent of black carbon in the global atmosphere comes
from China and India, emitted from the burning of wood and cow dung in
household cooking and through the use of coal to heat homes. Countries in
Europe and elsewhere that rely heavily on diesel fuel for transportation
also contribute large amounts.
“Per capita emissions of black carbon from the United States and some
European countries are still comparable to those from south Asia and east
Asia,” Ramanathan said.
In south Asia, pollution often forms a prevalent brownish haze that has been
termed the “atmospheric brown cloud.” Ramanathan’s previous research has
indicated that the warming effects of this smog appear to be accelerating
the melt of Himalayan glaciers that provide billions of people throughout
Asia with drinking water. In addition, the inhalation of smoke during indoor
cooking has been linked to the deaths of an estimated 400,000 women and
children in south and east Asia.
Elimination of black carbon, a contributor to global warming and a public
health hazard, offers a nearly instant return on investment, the researchers
said. Black carbon particles only remain airborne for weeks at most compared
to carbon dioxide, which remains in the atmosphere for more than a century.
In addition, technology that could substantially reduce black carbon
emissions already exists in the form of commercially available products.
Ramanathan said that an observation program for which he is currently
seeking corporate sponsorship could dramatically illustrate the benefits.
Known as Project Surya, the proposed venture would provide some 20,000 rural
Indian households with smoke-free cookers and equipped to transmit data. At
the same time, a team of researchers led by Ramanathan would observe air
pollution levels in the region to measure the effect of the cookers.
Carmichael said he hopes that the paper’s presentation of the immediacy of
the benefits will make it easier to generate political and regulatory
momentum toward reduction of black carbon emissions.
“It offers a chance to get better traction for implementing strategies for
reducing black carbon,” he said.
The National Science Foundation, the National Oceanic and Atmospheric
Administration and the National Aeronautics and Space Administration funded
the review.
SOURCE: University of California - San Diego |